CAPS Match 2024: Solutions and Marking schemes

ISTA, Austria
June 30 - July 3, 2024

Problem 1. Determine whether there exist 2024 distinct positive integers satisfying the following: If we consider every possible ratio between two distinct numbers (we include both a / b and b / a), we will obtain numbers with finite decimal expansions (after the decimal point) of mutually distinct non-zero lengths.
(Patrik Bak, Slovakia)

Solution. We will show these numbers exist. For that we define sequences $a_{1}, a_{2}, \ldots, a_{2024}$ and $b_{1}, b_{2}, \ldots, b_{2024}$ and then consider numbers $c_{i}=2^{a_{i}} \cdot 5^{b_{i}}$ for $i=1,2, \ldots, 2024$.

We choose the sequences a_{i} and b_{i} in such a way that a_{i} is increasing, b_{i} is decreasing, and the differences $a_{i}-a_{j}$ and $b_{j}-b_{i}$ were all mutually distinct for all indices $i>j$. This will be enough because

$$
\frac{c_{i}}{c_{j}}=\frac{2^{a_{i}} \cdot 5^{b_{i}}}{2^{a_{j}} \cdot 5^{b_{j}}}=\frac{2^{a_{i}-a_{j}}}{5^{b_{j}-b_{i}}},
$$

this number has a decimal expansion of a length $b_{j}-b_{i}$, whereas analogously, $\frac{c_{j}}{c_{i}}$ has a length of $a_{i}-a_{j}$.

We now construct the needed sequences, starting with a_{i}. We will do it inductively. Take $a_{1}=1, a_{2}=2$. When we have the numbers $a_{1}, a_{2}, \ldots, a_{i}$, then by choosing $a_{i+1}=2 a_{i}$ we will achieve $a_{i+1}-a_{i}>a_{i}-a_{1}$, therefore all newly added differences will be higher than the previous ones.

We can construct b_{i} similarly, starting at the end by taking $b_{2024}=a_{2024}$, then $b_{2023}=$ $2 b_{2024}$, and so on. Since $b_{2023}-b_{2024}=a_{2024}$, all the differences in b_{i} will be at least $b_{2023}-b_{2024}=a_{2024}$.

Remark: In our construction, $a_{i}=2^{i-1}$ and $b_{i}=2^{4049-i}$.

Marking scheme.

Partial scores for otherwise incomplete solutions:
$\left(A_{0}\right)$ Realising that the numbers must be of form $2^{a_{i}} \cdot 5^{b_{i}}+1 \mathrm{p}$
$\left(A_{1}\right)$ Realising that a_{i} must be increasing and b_{i} decreasing +1 p
$\left(A_{2}\right)$ Stating that number of the form $N / 5^{a}$ and $N / 2^{a}$ have decimal expansion of length a. +1 p
$\left(A_{3}\right)$ Proving that having all differences $a_{i}-a_{j}$ and $b_{i}-b_{j}$ are mutually distinct is sufficient +2 p
$\left(A_{4}\right)$ Constructing the sequences a_{i} and b_{i}. +2 p
Deductions for essentially complete solutions:
(C) An essentially complete solution

7p
$\left(F_{0}\right)$ Missing proof that the sequences a_{i} and b_{i} satisfy the condition in A_{3}. -1 p
$\left(F_{1}\right)$ Any other minor flaw -1 p
Define $A=\sum_{i=0}^{4} A_{i}$ and $B=C+F_{0}+F_{1}$. Give $\max \{A, B\}$ points.
Remark: The construction from the official solution is (up to the choice of exponents a_{i}, b_{i} and possible multiplication by any integer) unique. Disregard this freedom when marking these solutions.

Problem 2. For a positive integer n, an n-configuration is a family of sets $\left\langle A_{i, j}\right\rangle_{1 \leq i, j \leq n}$. An n-configuration is called sweet if for every pair of indices (i, j) with $1 \leq i \leq n-1$ and $1 \leq j \leq n$ we have $A_{i, j} \subseteq A_{i+1, j}$ and $A_{j, i} \subseteq A_{j, i+1}$. Let $f(n, k)$ denote the number of sweet n-configurations such that $A_{n, n} \subseteq\{1,2, \ldots, k\}$. Determine which number is larger: $f\left(2024,2024^{2}\right)$ or $f\left(2024^{2}, 2024\right)$.
(Wojciech Nadara, Poland)
Solution. Consider a sweet n-configuration $\left\langle A_{i, j}\right\rangle_{1 \leq i, j \leq n}$ with $A_{n, n} \subset\{1,2, \ldots, k\}$. For any $x \in\{1,2, \ldots, k\}$ and $i \in\{1,2, \ldots, n\}$ define

$$
p_{x}(i)=\left|\left\{j: x \in A_{i, j}\right\}\right| .
$$

Since $A_{i, j} \subseteq A_{i, j+1}$ for all suitable i, j, the set $\left\{j: x \in A_{i, j}\right\}$ consists of $p_{x}(i)$ largest elements of $\{1,2, \ldots, n\}$. Since $A_{i, j} \subseteq A_{i+1, j}$ for all suitable i, j, the function $p_{x}:\{1,2, \ldots, n\} \rightarrow$ $\{0,1,2, \ldots, n\}$ is nondecreasing. Therefore every sweet n-configuration determines a family $\left\langle p_{x}\right\rangle_{1 \leq x \leq k}$ of nondecreasing functions $p_{x}:\{1,2, \ldots, n\} \rightarrow\{0,1, \ldots, n\}$. Conversely, every such a family determines a sweet n-configuration $\left\langle A_{i, j}\right\rangle_{1 \leq i, j \leq n}$ with $A_{n, n} \subset\{1,2, \ldots, k\}$ in the following way: $A_{i, j}=\left\{x \in\{1,2, \ldots, k\}: j \geq n+1-p_{x}(i)\right\}$. Therefore $f(n, k)=$ $g(n)^{k}$ where $g(n)$ is the number of nondecreasing functions $p:\{1,2, \ldots, n\} \rightarrow\{0,1, \ldots, n\}$.

Using the stars-and-bars method, there is a bijection between the family of nondecreasing functions $p:\{1,2, \ldots, n\} \rightarrow\{0,1, \ldots, n\}$ and the set of sequences consisting of n stars and n bars. The bijection is given by

$$
p \longrightarrow \underbrace{* * \ldots *}_{p(1)}|\underbrace{* * \ldots *}_{p(2)-p(1)}| \underbrace{* * \ldots *}_{p(3)-p(2)}|\ldots| \underbrace{* * \ldots *}_{p(n)-p(n-1)} \mid \underbrace{* * \ldots *}_{n-p(n)}
$$

Thus $g(n)=\binom{2 n}{n}$.
The problem boils down to determining which of the numbers

$$
\binom{2 n}{n}^{n^{2}}, \quad\binom{2 n^{2}}{n^{2}}^{n}
$$

where $n=2024$, is larger. Note that

$$
\begin{aligned}
\binom{2 n^{2}}{n^{2}} & =\frac{\prod_{i=1}^{n^{2}}\left(n^{2}+i\right)}{\prod_{i=1}^{n^{2}} i}=\prod_{i=1}^{n^{2}}\left(\frac{n^{2}+i}{i}\right)=\prod_{j=0}^{n-1} \prod_{i=1}^{n} \frac{n^{2}+j n+i}{j n+i}>\prod_{j=0}^{n-1}\left(\frac{n^{2}+j n+n}{j n+n}\right)^{n}= \\
& =\prod_{j=0}^{n-1}\left(\frac{n+j+1}{j+1}\right)^{n}=\left(\prod_{j=1}^{n} \frac{n+j}{j}\right)^{n}=\binom{2 n}{n}^{n}
\end{aligned}
$$

and therefore

$$
\binom{2 n^{2}}{n^{2}}^{n}>\binom{2 n}{n}^{n^{2}}
$$

Remark: A sketch of a slightly different way of thinking about $\mathrm{f}(\mathrm{n}, \mathrm{k})=\binom{2 n}{n}^{k}$: Consider an $n \times n$ table. In a cell with coordinates (i, j), list all the elements of the set $A_{i, j}$. Fix an element $x \in\{1, \ldots, k\}$ and consider the cells that contain the number x. By the condition, those cells form a region closed under making a step right and making a step up. Such regions are delimited by grid paths that start at $[0, n]$, end at $[n, 0]$, and only steps right or down. There are $\binom{2 n}{n}$ possible paths for each x, thus $f(n, k)=\binom{2 n}{n}^{k}$.

Marking scheme. Partial scores for otherwise incomplete solutions:
$\left(A_{0}\right)$ Guessing the answer
$\left(A_{1}\right)$ Showing that $f(n, k)=g(n)^{k}$ for any reasonable definition of $g . \quad+2 \mathrm{p}$
$\left(A_{2}\right)$ Showing that $g(n)=\binom{2 n}{n} \quad+3 \mathrm{p}$
$\left(A_{3}\right)$ Showing the inequality +2 p

Deductions for essentially complete solutions:

$$
\begin{array}{lr}
(C) \text { An essentially complete solution } & 7 \mathrm{p} \\
(F) \text { Minor flaw } & -1 \mathrm{p}
\end{array}
$$

Define $A=\sum_{i=0}^{3} A_{i}$ and $B=C+F$. Give $\max \{A, B\}$ points.

Problem 3. Let $A B C$ be a triangle and D a point on its side $B C$. Points E, F lie on the lines $A B, A C$ beyond vertices B, C, respectively, such that $B E=B D$ and $C F=C D$. Let P be a point such that D is the incenter of triangle $P E F$. Prove that P lies inside the circumcircle Ω of triangle $A B C$ or on it. (Josef Tkadlec, Czech Republic)

Solution. Let ω the circumcircle of triangle $A E F$ and let I_{A} be the A-excenter of triangle $A B C$. First, we prove that I_{A} is the midpoint of the arc $E F$ of ω that does not contain point A (see the left figure).

To that end, note that since I_{A} lies on the external angle bisector of $\angle B$ and $B E=B D$, triangles $B E I_{A}$ and $B D I_{A}$ are congruent (SAS). Similarly, triangles $C F I_{A}$ and $C D I_{A}$ are congruent, so in particular $I_{A} E=I_{A} F$. Moreover, $\angle B E I_{A}+\angle C F I_{A}=\angle B D I_{A}+$ $\angle C D I_{A}=180$, hence the points A, E, I_{A}, F lie on a single circle in this order.

Next, we prove that P is the second intersection of $I_{A} D$ and ω (see the middle figure). Let I be the incenter of triangle $A B C$. Then $E D \| B I$ and $D F \| I C$. Setting $\angle E A F=\alpha$, we get $\angle E D F=\angle B I C=90+\frac{1}{2} \alpha$, thus $\angle E P F=\alpha=\angle E A F$, so P lies on ω. Since I_{A} is the midpoint of arc, it lies on the angle bisector $P D$, so P lies both on $I_{A} D$ and on ω as claimed.

Finally, we show that P lies on that arc of ω which lies inside Ω (see the right figure). Let $M \neq A$ be the second intersection of ω and Ω (if they are tangent, we set $M=A$). Then M is the center of the spiral similarity that maps $B E$ to $C F$ (alternatively, we anglechase that triangles $M B E$ and $M C F$ are similar by AA). Thus $M B / M C=B E / C F=$ $B D / D C$, so $M D$ is the angle bisector of $B M C$, and so it passes through the midpoint S of the arc $B C$ of Ω that does not contain A.

Now forget about points B, C, E, F and focus on circles Ω, ω and on the points A, M, I_{A}, S, D, P. Circles Ω and ω share points A and M. Being the A-excenter of $A B C$, point I_{A} belongs to that arc $A M$ of ω which lies outside of Ω (e.g. since $A I_{A}>A S$). Point S lies on the segment $A I_{A}$ and point D lies on the segment $S M$, so point D lies inside the angle $A I_{A} M$. Thus, point $P=I_{A} D \cap \omega$ belongs to the other arc $A M$ of ω than I_{A}, namely to the one which lies inside Ω.

Marking scheme. Partial scores for otherwise incomplete solutions:
$\left(A_{1}\right)$ Proving that E, F, P, A lie on a circle.
$\left(A_{2}\right)$ Proving that I_{A} is the midpoint of the arc $E F$ in ω.
$\left(A_{3}\right)$ Introducing M and showing that it is sufficient to show that P lies on the arc $A M$ not containing I_{A} and that I_{A} belongs to the arc $A M$ which lies outside $\Omega . \quad 1 \mathrm{p}$
$\left(A_{4}\right)$ Proving the similarity of triangles $M B E$ and $M C F$. 1 p
$\left(A_{5}\right)$ Proving that M, D, S are collinear. 2 p
$\left(A_{6}\right)$ Proving that P lies on the arc $A M$ not containing I_{A}. 1 p

Deductions for essentially complete solutions:
$\begin{array}{ll}(C) \text { Full solution } & 7 \mathrm{p} \\ \left(F_{0}\right) \text { Minor mistake (i.e not showing that } I_{4} \text { lies outside } \Omega \text { or equivalent) } & -1 \mathrm{p}\end{array}$
$\left(F_{0}\right)$ Minor mistake (i.e. not showing that I_{A} lies outside Ω or equivalent) $\quad-1 \mathrm{p}$
Define $A=\sum_{i=1}^{6} A_{i}$ and $B=C+F_{0}$. Give $\max \{A, B\}$ points.
Incomplete computational solutions are not worth points unless they reach any of the points above and the geometrical interpretation is stated.

Problem 4. Let $A B C D$ be a quadrilateral, such that $A B=B C=C D$. There are points X, Y on rays $C A, B D$, respectively, such that $B X=C Y$. Let P, Q, R, S be the midpoints of segments $B X, C Y, X D, Y A$, respectively. Prove that points P, Q, R, S lie on a circle.
(Michal Pecho, Slovakia)

Solution. Let M be the midpoint of $X Y$. Note that $P R$ is midline in triangles $X B D$ and $X B Y$, hence M lies on $P R$. Analogously M lies on $Q S$.

Let ω_{1} be a circle with center B and radius $A B=B C$ and ω_{2} be a circle with center C and radius $B C=C D$.

Distance of X from center of ω_{1} is the same sa distance of Y from center of ω_{2} and also ω_{1} and ω_{2} have radius of same size, hence power of X with respect to ω_{1} is the same as power of Y with respect to ω_{2}, so

$$
X A \cdot X C=Y D \cdot Y B
$$

Using homotheties centered at X, Y we get that $M S \cdot M Q=M R \cdot M P$ and thus points P, Q, R, S lie on a circle.

Marking scheme. Partial scores for otherwise incomplete solutions:
(A) Prove that $P R$ and $Q S$ intersect in the middle of $X Y$. 2 p $\left(A_{1}\right)$ Hypothesis that $P R$ and $Q S$ intersect at $X Y$. 1 p
(B) Stating that $M R \cdot M P=M S \cdot M Q$ suffices for the problem statement to hold. 0 p
(C) Prove that it suffices to show $X A \cdot X C=Y D \cdot Y B$, for instance by reducing (B) to (C) using the mentioned homothety.
(D) Prove that $X A \cdot X C=Y D \cdot Y B$. 3 p
$\left(D_{0}\right)$ Having circles with radius $B C$ in a diagram.
$\left(D_{1}\right)$ Verbally considering circle(s) with radius $B C$ as a means of proving (D). 1 p
Deductions for essentially complete solutions:
(P) Full solution
$\left(F_{0}\right)$ Minor mistake

Define $X=\max \left\{A, A_{1}\right\}+B+C+\max \left\{D, D_{0}, D_{1}\right\}$ and $Y=P+F_{0}$. Give $\max \{X, Y\}$ points.

Incomplete computational solutions are not worth points unless they reach any of the points above and the geometrical interpretation is stated.

Problem 5. Let $\alpha \neq 0$ be a real number. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f\left(x^{2}+y^{2}\right)=f(x-y) f(x+y)+\alpha y f(y)
$$

holds for all $x, y \in \mathbb{R}$.
(Walther Janous, Austria)

Solution. Answer: For every $\alpha \neq 0$, the zero function and the function with value 1 at 0 , but 0 elsewhere are solutions. For $\alpha=2$, the identity function $x \mapsto x$ is another solution.

Solution-check. The linear function clearly works. Consider the function f such that $f(0)=1$ and $f(x)=0$ otherwise. Note that $y f(y)=0$ for all real numbers y. Then it is sufficient to realize that $f\left(x^{2}+y^{2}\right) \neq 0$ iff $x=0 \wedge y=0$. Similarly $f(x-y) f(x+y) \neq 0$ iff $x+y=x-y=0 \Leftrightarrow x=0 \wedge y=0$ which shows that also this function is a solution.
Proof. Denote by $P(x, y)$ the proposition in the problem statement. Comparing $P(x, y)$ with $P(x,-y)$ yields $f(y)=-f(-y)$ for all $y \neq 0$. Using this equality, $P(y, x)$ shows that $2 f(x-y) f(x+y)=\alpha(x f(x)-y f(y))$ for $x \neq y$. Plugging this into the original equation, we obtain

$$
f\left(x^{2}+y^{2}\right)=\frac{\alpha}{2}(x f(x)+y f(y))
$$

for $x \neq y$. Setting $y=0$ in this equation shows $f\left(x^{2}\right)=\alpha x f(x) / 2$ for $x \neq 0$, whereas $P(x, 0)$ gives $f\left(x^{2}\right)=f(x)^{2}$ for all $x \in \mathbb{R}$. Hence $\alpha x f(x) / 2=f(x)^{2}$, that is, $f(x)=0$ or $f(x)=\alpha x / 2$ for $x \neq 0$. In particular, if $f(x) \neq 0$, then $f(x)=\alpha x / 2$. On the other hand, $P(0,0)$ shows $f(0)=f(0)^{2}$ and therefore $f(0)=0$ or $f(0)=1$.

Consider first the case that $f(x)=0$ for all $x \neq 0$. Then both possible values for $f(0)$ yield functions fulfilling the original equation (if $(x, y) \neq(0,0)$, all terms in $P(x, y)$ are zero anyway and $(x, y)=(0,0)$ was treated before $)$.

Now for the other case: There is a real number $z \neq 0$ satisfying $f(z)=\alpha z / 2$. Then $f\left(z^{2}\right)=f(z)^{2}=(\alpha / 2)^{2} z^{2} \neq 0$, and hence $f\left(z^{2}\right)=(\alpha / 2) z^{2}$. By comparing the last two statements, we obtain $\alpha=2$ and then $f(z)=z$.

- $f(0)=1$. Consider $P(z / 2, z / 2): f\left(z^{2} / 2\right)=z+z f(z / 2)$. The left-hand side is 0 or $z^{2} / 2$, the right-hand side z or $z+z^{2} / 2$. Since $z \neq 0$, only $z^{2} / 2=z \Longleftrightarrow z=2$ and $0=z+z^{2} / 2 \Longleftrightarrow z=-2$ are possible. Either way, $f(2)=2$ and $f(-2)=-2$, because f is odd. But then $f(4)=f\left(2^{2}\right)=f(2)^{2}=4$, which is impossible, because we just proved that $z=2$ and $z=-2$ are the only real numbers with $f(z)=z$.
- $f(0)=0$. We show that $f(x)=0$ for all positive reals x if f is not the identity function:
(1) There are $0<a<b$ with $f(a)=0, f(b)=b$. Then $P(x, y)$ for $x=\sqrt{b-a}$ and $y=\sqrt{a}$ yields

$$
0 \neq b=f(b)=f(x-y) f(x+y)+2 f(a)=f(x-y) f(x+y),
$$

hence $f(x-y)=x-y$ and $f(x+y)=x+y$ and $b=x^{2}-y^{2}=b-2 a$, forcing the contradiction $a=0$.
(2) There are $0<a<b$ with $f(a)=a, f(b)=0$. Analogous to Case 1, we arrive at the contradiction $b=0$ when investigating $P(\sqrt{b-a}, \sqrt{a})$.
Except for the identity, we only have $f(x)=0$ for $x>0$ and thus $f(x)=0$ for $x \neq 0$ as possible solution, which we have already found and treated before.

Marking scheme. Partial scores for otherwise incomplete solutions:
$\left(A_{0}\right)$ Guessing all the solutions with solution check
$\left(A_{1}\right)$ Proving that f is odd 1 p
$\left(A_{2}\right)$ Obtaining $f(x) \cdot(f(x)-\alpha x / 2)=0$

Deductions for essentially complete solutions:
(C) An essentially complete solution 7p
$\left(F_{0}\right)$ Mistake in casework which leads to missing a solution $-2 \mathrm{p}$
$\left(F_{1}\right)$ Solution-check missing (especially for the non-linear function)
$-1 \mathrm{p}$
(F_{2}) Other minor flaw
$-1 \mathrm{p}$
Define $A=\max \left\{A_{0}, A_{1}, A_{2}\right\}$ and $B=C+\min \left\{F_{0}, F_{1}\right\}+F_{2}$. Give $\max \{A, B\}$ points.

Problem 6. Determine whether there exist infinitely many triples (a, b, c) of positive integers such that p divides $\left\lfloor(a+b \sqrt{2024})^{p}\right\rfloor-c$ for every prime p.
Note: $\lfloor x\rfloor$ denotes the largest integer not larger than x. (Walther Janous, Austria)

Solution.

Let $D:=2024$. Consider any pair of positive integers (a, b) such that $0<a-b \sqrt{D}<1$. One can easily find an infinite number of such pairs by choosing $a=\lceil b \sqrt{D}\rceil$. Then

$$
(a+b \sqrt{D})^{p}+(a-b \sqrt{D})^{p}=2 a^{p}+2 \sum_{k=1}^{\infty}\binom{p}{2 k} a^{p-2 k} b^{2 k} D^{k} \in \mathbb{Z}
$$

is larger than $(a+b \sqrt{D})^{p}$, since we add a positive term, but it is smaller than $(a+b \sqrt{D})^{p}+1$. As it is integer and $p \left\lvert\,\binom{ p}{2 k}\right.$ for all $1 \leq k \leq \frac{p-1}{2}$, we see that

$$
\begin{aligned}
\left\lfloor(a+b \sqrt{D})^{p}\right\rfloor & =(a+b \sqrt{D})^{p}+(a-b \sqrt{D})^{p}-1 \\
& =2 a^{p}+2 \sum_{k=1}^{\infty}\binom{p}{2 k} a^{p-2 k} b^{2 k} D^{k}-1 \equiv 2 a-1 \quad(\bmod p)
\end{aligned}
$$

by Fermat's little theorem. Observe that this congruence is also valid for $p=2$, although $2 \nmid\binom{2}{2.1}$, because the sum is taken twice anyway. Therefore, choosing $c:=2 a-1$, we get $p \mid\left[(a+b \sqrt{D})^{p}\right]-c$ for all primes p.

In summary, for any positive integer b we get a triple (\lceil sqrt2024b $\rceil, b, 2\lceil s q r t 2024 b\rceil-1$) that has the desired property.

Marking scheme. Partial scores for otherwise incomplete solutions:
$\left(A_{0}\right)$ Guessing the answer 0 p
$\left(A_{1}\right)$ Stating the correct construction of numbers a, b (without a proof) 1 p
$\left(B_{1}\right)$ Performing "reasonable" computation with $a+b \sqrt{D}$ and $a-b \sqrt{D} \quad 1 \mathrm{p}$
$\left(B_{2}\right)$ Showing that $(a+b \sqrt{D})^{p}+(a-b \sqrt{D})^{p}$ is an integer. 2 p
$\left(B_{3}\right)$ Showing that $(a+b \sqrt{D})^{p}+(a-b \sqrt{D})^{p} \equiv 2 a(\bmod p)$. 4 p
Deductions for essentially complete solutions:
(C) An essentially complete solution
$\left(F_{0}\right)$ Missing and argument that the construction is giving us infinitely many solutions $-1 p$
$\left(F_{1}\right)$ Other minor flaw (e.g. mistake in computation that leads to wrong construction) $-1 \mathrm{p}$
Define $B=\max \left\{B_{1}, B_{2}, B_{3}\right\}$ and $E=C+F_{0}+F_{1}$. Give $\max \left\{A_{1}+B, E\right\}$ points.

